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Adding organic electron donors to stimulate microbial
reduction of highly soluble U(VI) to less soluble U(lV) is a
promising strategy for immobilizing uranium in contaminated
subsurface environments. Studies suggest that diagnosing the
in situ physiological status of the subsurface community during
uranium bioremediation with environmental transcriptomic and
proteomic techniques can identify factors potentially limiting
U(VI) reduction activity. Models which couple genome-scale in
silico representations of the metabolism of key microbial
populations with geochemical and hydrological models may be
able to predict the outcome of bioremediation strategies and
aid in the development of new approaches. Concerns remain
about the long-term stability of sequestered U(IV) minerals and
the release of co-contaminants associated with Fe(lll) oxides,
which might be overcome through targeted delivery of
electrons to select microorganisms using in situ electrodes.
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Introduction

Uranium contamination of groundwater is extensive
worldwide and prohibitively expensive to remediate with
traditional strategies, such as pump-and-treat. A promis-
ing alternative is to promote microbial reduction of U(VI)
to U(IV), which removes uranium from groundwater as an
insoluble precipitate (Figure 1) [1°%,2°%,3]. This consti-
tutes a more attractive option than other biological altern-
atives, such as biosorption or bioaccumulation [4], due to
the greater stability of the reduced form [5]. The effec-

tiveness of microbial reduction for removing uranium
from contaminated groundwater has been repeatedly
validated across a range of environments, including satu-
rated alluvial sediments [2°°] and fractured saprolite [6],
with remediation of environments impacted by uranium
mining via iz situ recovery (ISR) gaining considerable
interest [7].

In the twenty years since the discovery of microbial U(VI)
reduction, there has been significant progress in under-
standing the interplay of biology, hydrology, and geo-
chemistry, to the point where in some instances it is
possible to predictively model the coupled processes in
subsurface environments [8,9]. However, significant
questions remain about how to best optimize i situ
uranium bioremediation because of important knowledge
gaps about microbe-microbe and microbe—-mineral inter-
actions, as well as a need for more information regarding
uranium geochemistry in subsurface environments.

Microorganisms associated with subsurface
U(VI) reduction

A broad diversity of microorganisms available in pure
culture is capable of U(VI) reduction (Figure 2) [1°°4].
Most are anaerobes that have the ability to reduce other
metals, most notably Fe(III), which often represents the
most abundant electron acceptor in subsurface environ-
ments [9]. It is now recognized that not only vegetative
cells, but in some instances spores, can catalyze U(VI)
reduction [10°,11]. Recently recognized U(VI)-reducing
microorganisms include: Pseudomonas sp., Pantoea sp. and
Enterobactersp. recovered from the soil of a uranium mine
[12]; several  Geobacter species isolated from
contaminated sites [9,13]; and the thermophile Thermus
scotoductus [14°].

T scotoductus contains a putative peptide ABC transporter,
peptide-binding protein capable of U(VI) reduction [14°].
It was concluded that U(VI) reduction by this protein was
fortuitous. Promiscuous reduction of U(VI) by proteins
with other redox functions is probably a common theme
in microbial U(VI) reduction, because, although microbial
U(VI) can be driven by natural organic matter in sedi-
mentary environments [15°], levels of U(VI) in unconta-
minated waters are typically so low that it is unlikely that
specific U(VI) respiratory pathways have evolved [3]. For
example, reduction of U(VI) by Geobacter species appears
to be quite non-specific, with a diversity of outer-surface
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Figure 1
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Conceptual illustration of the process of uranium bioremediation. (a) Indigenous microorganisms present in soils, sediments, and groundwater
contaminated by nuclear energy and weapons production activities are stimulated through introduction of organic carbon compounds via injection
wells. Select organisms may couple the oxidation of organic carbon (and Hy) to the reduction of aqueous uranium, as U(VI), converting it from a soluble
to an insoluble form, as U(IV). (b) Reduced U(IV) may be re-oxidized to U(VI) following cessation of organic carbon injection accompanying subsequent
delivery of oxidants, such as O,, NO;~, and Fe®*; the presence of diffusional barriers (e.g., biomass or low permeability sediments) or preferential
reductants (e.g., FeS) can suppress re-oxidation and maintain stability of immobilized U(IV).

c-type cytochromes capable of transferring electrons to
U(VI) [9] in a manner similar to that reported for humic
substances [16]. Geobacter species have the ability to
reduce electron acceptors at substantial distance from
the cell via pili with metallic-like conductivity [17,18]
and an associated ¢-type cytochrome [19], but the sugges-
tion that pili are the major site for U(VI) reduction [20] is
inconsistent with multiple lines of evidence that suggest
that pili are not required for U(VI) reduction [21].

It is difficult to definitively determine which microorgan-
isms are responsible for U(VI) reduction in most subsur-
face environments, as the availability of alternative
electron acceptors capable of supporting anaerobic respir-
ation, such as nitrate, Fe(III), or sulfate [1°°,3], is typically
much greater than that of U(VI), even in contaminated
environments. Thus, although it is common to ascribe the
major role in U(VI) reduction to the most dominant
organisms in the groundwater during uranium bioreme-
diation, in reality a minor component of the community
may be sufficiently abundant to account for the observed
U(VI) reduction. Although many studies have focused on

planktonic populations and the U(VI) in groundwater,
microorganisms affixed to subsurface sediments can play
an important role in U(VI) reduction, as U(VI) adsorbed
onto sediments can also be reduced, converting it to forms
less prone to desorption and release to groundwater
[22°,23] (Figure 3).

Many environmental conditions (e.g., type of organic
substrates added, pH, salinity, e#c.) influence which micro-
organisms predominate during 7z situ uranium bioreme-
diation [24,25]. In some instances, molecular microbial
community analysis has revealed rather complex
microbial communities associated with bioremediation
of uranium-contaminated groundwater [1°°]. This was
apparent in different treatment zones at the U.S. Depart-
ment of Energy’s (DOE’s) Integrated Field Research
Challenge (IFRC) site at Oak Ridge, Tennessee
(USA). Groundwater at ‘Area 3’, which had low pH
and high nitrate in addition to uranium contamination,
was treated with an inner U(VI) bioreduction loop, nested
within an outer groundwater-conditioning loop. Geochip
analyses revealed distinct microbial communities in the
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16S rRNA based phylogenetic tree of U(VI)-reducing prokaryotes.
Adapted from Kostka and Green [1°°].

two components of the treatment system, with metal-
reducing bacteria, such as Desulfovibrio, Geobacter, Anae-
romyxobacter and Shewanella species highly abundant in
the inner iz situ U(VI)-reduction zone, which received
ethanol as an electron donor [26,27]. A massively parallel
sequencing-indicator species approach identified Desulfo-

vibrio, Anaeromyxobacter, and Desulfosporosinus species as
the predominant organisms [28]. Microorganisms in the
families Burkholderiaceae, Comamonadaceae, Oxalobactera-
ceae, and Rhodocyclaceae predominated when microbial
activity was stimulated with ethanol and methanol in
sediment incubations [24].
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Figure 3
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Products of U(VI) bioreduction. Comparison of Shewanella oneidensis cells (a-c) and associated nanoparticulate uraninite (UO,) to S. oneidensis cells
exhibiting localized deposits of poorly ordered U(IV) coordination polymers (d,e); scale bars in (d,e) are 200 and 50 nm, respectively. U(IV)
morphologies are distinct, with U(IV) coordination polymers staining tuft-like masses on the cells. Images are bright-field transmission electron
micrographs; (c) is a selected area electron diffraction pattern interpreted as uraninite.

Adapted with permission from Bernier-Latmani et al. [72°°].

In studies at ‘Area 2’, which has circumneutral pH and
lower nitrate levels, Actinobacteria were the most active
under metal-reducing conditions in assimilating ">C from
the "*C-ethanol added to promote microbial activity in
laboratory sediment incubations [29]. Other laboratory
studies with sediments from the Oak Ridge site demon-
strated that the type of electron donor added and sedi-
ment origin greatly influenced which microorganisms
predominated following addition of electron donors
[24]. In a field study at this site, addition of emulsified

vegetable oil stimulated nitrate, Fe(III), U(VI), and sul-
fate reduction resulting in a succession of members of the
Comamonadaceae, Geobacteraceae, and Desulfobacterales [30].

In contrast to the complexity of the microbial community
at the Oak Ridge site, a much simpler microbial com-
munity has been noted during the most active phase of
U(VI) reduction at the DOE’s IFRC site at Rifle, CO,
USA [2°°]. This may in part be attributed to the circum-
neutral pH, negligible nitrate, and the fact that acetate, a
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non-fermentable substrate, served as the electron donor
to promote U(VI) reduction. Increasingly sophisticated
molecular analyses performed using a field-portable
microarray analysis system [31], Geochip [32] and Phy-
loChip technologies [33], environmental proteomics [34—
36], and analysis of *C-acetate incorporation into lipids
[37] and DNA [2°°,22°] have confirmed the findings
derived from earlier 16S rRNA gene sequence analyses
that Geobacter species can account for up to 90% of the 16S
rRNA sequences recovered from groundwater during
active U(VI) reduction [3,9]. Geobacter species possess a
number of physiological characteristics that may favor
their growth in anaerobic subsurface environments
[1°°,9,38], including the recently recognized capability
to grow as electron-donating partners in syntrophic
relationships when Fe(IIl) is not available [39,40]. At
the Rifle site, Geobacter species initially grow with Fe(I1T)
as their primary electron acceptor; however, their ability
to effectively reduce U(VI) [9] for sustained periods of
time suggests that they may also be the primary U(VI)
reducers when iron and sulfate reduction (and perhaps
methanogenesis) are the predominant metabolic path-
ways, supplementing U(VI) reduction with reduction of
elemental sulfur or syntrophic growth [2°°].

Systems analysis and genome-scale modeling
of uranium bioremediation

The relative simplicity of the microbial community
associated with uranium bioremediation at the Rifle site
has made it feasible to analyze and model the iz situ
activity of important subsurface populations and develop
tools that can now be potentially applied to more complex
bioremediation sites. As recently reviewed [9], a series of
studies quantifying transcript abundance of key genes in
subsurface Geobacter populations elucidated important
physiological parameters, such as rates of metabolism
[2°°], growth rates [9], limitations for key nutrients, such
as electron donor [41], phosphate [42], and fixed nitrogen
[43], as well as other environmental stresses [43].
Environmental proteomic studies confirmed the abun-
dance of Geobacter associated with peak rates of U(VI)
reduction and provided information on relative metabolic
activity [34,35,44]. The ability of Geobacter species to
utilize electrodes as electron acceptors has made it feas-
ible to also monitor their 7z situ rates of metabolism by
emplacing electrodes in the subsurface [45].

Ideally, bioremediation strategies will be designed in the
future with models that can accurately predict the out-
come of bioremediation before field implementation,
enabling optimization of bioremediation approaches.
For example, it may be desirable to titrate in the mini-
mum amount of electron donor necessary to promote
effective U(VI) reduction, without producing excess bio-
mass that may reduce permeability [2°°] or stimulate the
growth of organisms, such as acetate-oxidizing sulfate
reducers [46] that consume added electron donor but

do not contribute to U(VI) reduction. Models for describ-
ing U(VI) reduction in subsurface sediments are being
developed with several different approaches [47°°,48-51].

Development of truly predictive models will require the
ability to forecast how key components of the microbial
community respond to changing environmental con-
ditions during bioremediation. One potential approach
is Bottom-Up Genome Scale (BUGS) modeling in which
genome-scale metabolic models of key organisms influ-
encing the bioremediation process are coupled to geo-
chemical and hydrological models [9]. An advantage of
BUGS modeling is that it accounts for important changes
in microbial physiology (e.g., growth yields) associated
with the changing environmental conditions that micro-
organisms experience during uranium bioremediation;
such features are not represented in traditional
approaches for modeling microbial activity. BUGS mod-
eling has been effective in predicting the course of
uranium bioremediation in the relatively simple case of
acetate-driven uranium bioremediation by coupling gen-
ome-scale models of Geobacter with reactive transport
models [8,52-55,56°,57].

BUGS modeling can describe more complex microbial
communities with the successive addition of genome-
scale models representing additional key populations. For
example, it greatly benefits 7z situ uranium bioremedia-
tion that Geobacter species, which are capable of U(VI)
reduction, outcompete acetate-oxidizing Fe(IIl)-redu-
cing Rhodoferax species (reportedly incapable of U(VI)
reduction) when acetate is added to the subsurface.
Following development of a Rhodoferax genome-scale
model [58], BUGS modeling predicted the ability of
Rhodoferax to effectively compete with Geobacter in the
subsurface before acetate amendments and elucidated
the physiological features that allow Geobacter to outcom-
pete Rhodoferax when high concentrations of acetate are
made available [56°]. Modeling the interaction between
Geobacter species and acetate-oxidizing sulfate reducers
that compete for acetate, but do not reduce U(VI),
improved the understanding of observed patterns of
U(VI) reduction during acetate amendment [57] and
suggested a strategy for enhancing uranium bioremedia-
tion through Fe(IIT) addition designed to maintain the
long-term U(VI)-reducing activity of Geobacter species
[59]. The ability of genome-scale metabolic modeling
to predict mutations that change metabolic fluxes to adapt
to new substrates may represent an additional predictive
power for optimizing bioremediation strategies [60].

The BUGS modeling approach requires a substantial
initial investment in isolating and characterizing
microorganisms in order to obtain the physiological
data required for modeling. In the future, this may be
expedited by major advances in metagenomics that, as
recently illustrated at the Rifle site, are providing
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important basic information on uncultured organisms
that should facilitate identification of the appropriate
strategies for recovering these organisms in culture
[61°°]. Ultimately, BUGS modeling can make the
design of bioremediation strategies far more predictive
and scientific, removing the substantial empiricism
associated with the typical current practices for bior-
emediation of uranium and other contaminants.

Geochemical factors influencing uranium
bioremediation

Also crucial for predicting the success of microbial U(VI)
reduction as a remediation strategy is an understanding of
the abiotic factors influencing the stability of reduced
uranium species. At circumneutral pH, U(VI) in ground-
water may primarily be complexed with inorganic carbon
[2°°] in forms that are less susceptible to microbial U(VI)
reduction than U(VI) in organic complexes [62,63], which
are more readily reduced via enzymatic processes than
with potential abiotic reductants. Although reduced iron
[64,65] and sulfur [66,67] species can reduce U(VI) under
laboratory conditions where inorganic constituents, such
as Ca%* and HCO;™, are included, incubation at envir-
onmentally relevant concentrations severally inhibits (or
suppresses) reduction [68°]. This is consistent with field
observations that U(VI) is only effectively removed when
enzymatic processes are likely to be operative [2°°].

Although the most studied product of microbial U(VI)
reduction is nanoparticulate (diameter <3-nm) uraninite
[69-71], recent studies have reported poorly ordered
coordination polymers of U(IV) coordinated to phos-
phoryl and/or carboxylate groups on biomass [72°°] or
mineral phases, such as ningyoite, CaU(POy,),
[71,72°°,73°%,74]. The chemical and physical forms of
U(IV) and the geochemical environment influence the
susceptibility of U(IV) to oxidation and mobilization via
the formation of complexes [75-80]. While susceptibility
of biogenic uraninite to oxidation is diminished by struc-
tural incorporation of Mn?* [81] and reaction with Ca%*
[82], the most important stabilizing mechanisms (see
Figure 1B) appear to be maintenance of low levels of
dissolved oxygen and/or sequestration within low per-
meability sediments or enveloping biomass [76].

Concerns about potential re-mobilization of uranium
precipitated as U(IV) illustrate the important limitation
of microbial U(VI) reduction as a bioremediation strategy,
which is that uranium remains in the subsurface. Other
potential drawbacks are loss of aquifer permeability due
to biomass and mineral accumulation [2°°], which can
impede prolonged delivery of organic carbon, and the
release of toxic contaminants, such as arsenic [83],

adsorbed onto Fe(III) oxides.

An alternative that overcomes these limitations is to
promote microbial U(VI) reduction by emplacing elec-

trodes that serve as the electron donor for the reduction of
U(VI) [3,84]. Negatively poised electrodes provide a
constant, steady source of electrons without promoting
significant microbial Fe(III) or sulfate reduction and the
deleterious water quality issues associated with those
reactions. Furthermore, the U(IV) produced in elec-
trode-driven microbial U(VI) reduction precipitates on
the electrodes, facilitating removal of uranium from the
subsurface. Although not predicated on reduction,
alternative mechanisms for uranium bio-immobilization,
such as biomineralization of insoluble U(VI)-phosphate
species [85°] through microbial phosphatase stimulation,
continue to attract interest for subsurface remediation.

Conclusions

Promoting microbial U(VI) reduction has proven to be an
effective strategy for removing uranium from contami-
nated groundwater in the short term, thereby preventing
its mobility. However, there is still significant uncertainty
about the long-term sustainability of this approach and
many options that might optimize the process have yet to
be evaluated. An important outcome of the intensive
investment in uranium bioremediation research in the
last decade has been the development of approaches for
assessing and modeling the activity of subsurface
microbial communities that are expected to be applicable
to the other forms of subsurface bioremediation, as well as
to the study of diverse microbial processes in a wide range
of soils and sediments.
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